
A Graphical, Rule Based Robotic Interface System

James W. McKee
University of Alabama, Huntsville

Box 212, RI-A4
Huntsville, Alabama 35899

John Wolfsberger
NASA/MSFC

EB 42
Huntsville, Alabama 35812

ABSTRACT

The ability of a human to take control of a robotic
system is essential in any use of robots in space in order to
handle unforeseen changes in the robot's work environment or
scheduled tasks. But in cases in which the work environment
is known, a human controlling a robotls every move by remote
control is both time consuming and frustrating to the human.

A system is needed in which the user can give the
robotic system commands to perform tasks but need not tell
the system how to perform the tasks. To be useful, this
system should to be able to plan and perform the tasks faster
than a telerobotic system. The interface between the user
and the robot system must be natural and meaningful to the
user.

This paper describes a high level user,interface program
under development at the University of Alabama, Huntsville.
The authors propose in this paper a graphical interface in
which the user selects objects to be manipulated by
selecting representations of the objects on projections of a
3-D model of the work environment. The user may move in the
work environment by changing the viewpoint of the
pro j ections .

The interface uses a rule based program to transform
user selection of items on a graphics display of the robot's
work environment into commands for the robot. The program
first determines if the desired task is possible given the
abilities of the robot and any constraints on the object. If
the task is possible, the program determines what movements
the robot needs to make to perform the task. The movements
are transformed into commands for the robot. The information
defining the robot, the work environment, and how objects may
be moved is stored in a s e t of data bases accessible to the
program and displayable to the user.

85

Introduction

The graphical user interface, to be described in this
paper, is part of a project to develop a software system
that will enable users to control robots from a task level
instead of having to either teach the robot the path or
write programs in the robotls language or when using
simulation programs specify points in the works space and
actions to be performed [3] .

There are two objectives of this project which have a
strong influence on the requirements of the graphical user
interface. The first objective is to divide the software
into functional modules such that new versions of any module
may be "plugged in" and the system tested. The second
objective is to be able to incorporate into the system the
knowledge and expertise that a person usually needs to have
to create programs for the robot.

We have divided this project into four modules: user
interface, path planning, environment calibration, and robot
code generation.

The user interface module will contain the graphical
descriptions and all the knowledge, rules, and constraints
about the robot and the work space. The function of a robot
is to move objects. The user interface is the means by which
the user tells the system which objects are to be moved and
where. The graphical user interface being presented in this
paper is only one of many possible user interface modules.

From the robot task requirements and the given geometric
and dynamical constraints on the robot motion, the path
planning module will define a path in the robot work space
that will avoid collisions and satisfy the constraints on the
joint dynamics.

The environment calibration module will allow the robot
to calibrate itself to a task board or other objects in the
work space. The module will also allow the system to verify
that what the robot l1seesg8 in the work space is what it
should see.

The robot code generation module transforms the internal
motion representation data into movement commands for a
particular robot.

Graphical User Interface

The user interface module has been divided into three
projects: object definition user interface (O D U I) , object
movement user interface (O M U I) , and rule based task planner
(RBTP). The ODUI program allows the user to create nekL
objects and enter the objects into the system data base. The-

86

OMUI allows the user to move around in the work space and
select objects to be moved. Once the user selects an object
and its destination, the RBTP determines if the object can be
moved and if so makes a list of fixed and flexible paths.

To support the graphics requirements on this project,
the user interface software is being developed on a Silicon
Graphics 3020 graphics station. The Silicon Graphics
computer is connected to a PUMA 562 robot by a RS232 line and
running the DDCMP protocol. This will be used as the
hardware configuration for system tests.

Object definition user interface

The purpose of the ODUI software is to allows a user to
create objects in the system. An object is a set of data
that contains the following types of information: name,
geometric description, physical attributes, movement and
positional constraints, and construction list.

The objective of this module is to make it easy for a
user to create the graphical description of objects that will
form the environment or are to be moved. The graphical
information will be used by the OMUI, the path planner module
and the environment calibration module. This is also how the
user creates the knowledge base of the physical attributes
and movement constraints of the object that the expert system
will need to determine if and how objects are to be moved.
The software being developed is intended to be a flexible
framework by which to store the knowledge data. This
software itself does not interpret or process any of the
knowledge data.

The user interface consists of levels of mouse
selectable pop-out menus buttons. The top level menu allows
the user to examine objects, edit objects, create objects, or
delete objects.

Objects are essentially data bases. To examine an
object, the user views the various lists of data in the
objects data base. This could be by viewing projections of
the graphical representation of the object or by viewing, in
text, format the contents of the other list of the object.

Each object is created with its own local coordinate
system. All references to the position of the object are
with respect to the origin of the object's coordinate system.
The object's geometric description and positional constraints
are defined in this coordinate system.

This is the key by which
the object is referenced when used to form another object or
when moved. Any object can be used as a template to create

Each object has a unique name.

87

copies of itself. The user must supply a unique name for the
new object when creating a new object from a template.

One or more objects may .be combined with or without
added graphics to create a new object. When an object is
incorporated into a new object, the name of the object being
incorporated and its rotation and translation are placed in
the new object's construction list.

The user through a process of creating objects and
combining objects builds up the robot, the environment and
the robot work space. Starting from the top and working
down, the robot work space contains everything and is an
object which is composed of two objects: the environment and
the robot. The robot is an object composed of objects that
are the links of the robot and a data base of the kinematic
equations for the links.

The environment is composed three types of objects:
movable objects, receptacle objects, and the task board
object . Movable objects are objects that have been se l ec ted
by the user to be movable by the robot. Receptacle objects
are objects in which or on which movable objects may be
placed. Movable objects may only be moved from one
receptacle object to another receptacle object.

The task board is everything else in the environment.
The task board object is needed for the geometric description
it generates in the path planner module and the environment
calibration module and to give the user a geometric feel for
where the other objects are located.

Receptacle objects contain the information about how
and where movable objects may be placed. For example, a
receptacle object could be a hole. In this case the hole
would carry the information about the size and shape of a
movable object that could be placed in the hole and the fact
that the object must be inserted. Another type of receptacle
object would be a pad. A pad would contain the information
that a movable object could be placed on it. The pad could
also contain the information about the orientation of the
movable object when it placed on the pad. More than one
receptacle object may be placed at the same geometric
location, each designed for a particular class of movable
objects.

Graphical descriptions are created by the user "drawingtt
simultaneously in three orthogonal projection windows. The
size and position of the windows on the monitor is user
controllable. Descriptions are created by combining volumes
and surfaces. There is a set of primitive volumes that
include cones, cylinders, and rectangles. These primitiv-
may be stretched to whatever size is needed. Surfaces are

88

planar polygons. The user combines these volumes and
surfaces to create graphic descriptions of the objects.

Object movement user interface

The objective of the OMUI software is to allow the user
to select objects and indicate where they are to be moved in
the robot s work space. The user sees on the graphics
monitor a two-dimensional projection of the three dimensional
work space of the robot.

The user may translate, rotate, and zoom the work space.
The user may select one of these three modes of moving the
work space by mouse selectable menu buttons on the side of
the screen. Once an option has been selected, the user
controls the direction of motion of the work space by
pressing one or more of the buttons on the mouse and the rate
of motion by the motion of the mouse.

The cursor mode is another mouse selectable menu button.
Once the cursor mode is selected, the user may select what
information about objects will be displayed as the curser
moves over their projection. The user may turn on object
highlighting, object name display, and/or object data
display. The highlighting switch causes the movable objects
and receptacle objects to be highlighted when the cursor
moves onto them. The object name switch causes the name(s)
of the object(s) under the cursor to be displayed. The
object data display switch allows the user to examine any of
the knowledge data for selected objects.

Once the work space is in the desired orientation and
magnification, the user may move a curser around on the
surface of the projection. After the cursor mode is
selected, the cursor is moved by pressing the right button on
the mouse as the mouse is moved. A movable object is grabbed
by clicking the middle button of the mouse when the cursor is
on the object. Only movable objects may be grabbed. The
destination is selected by moving the cursor onto a
receptacle object and clicking the left mouse button. The
object is dropped if the left button is clicked anywhere
else, in which case there is no change in the geometric
configuration.

At the present time only one object movement can be
selected in a session. A future enhancement will be to be
able to create lists of object movements that are to be
carried out in succession with the environment being updated
after each object movement.

8 9

Rule based task planner

Once a movable object has been grabbed and a destination
receptacle object selected, the RBTP must determine if it is
possible to move the object. The RBTP generates a set of
knot points for the geometric path of the movable object. A
knot is a pose (x, y, z , roll, pitch, yaw) through which the
movable object is to pass. Connecting the knot points are
fixed and flexible paths.

A fixed path is a path on which the pose of the movable
object is defined along the whole path. On a flexible path
the pose of the object is defined only at the end points.
The RBTP will also collect from the knowledge base of the
object a set of any applicable constraints on the movement of
the object. Constraints could be items such as a maximum
acceleration, allowable tilt angles on the object, maximum
gripping pressure, etc.

From the information in the data bases of the source and
destination receptacle objects, the RBTP creates the set of
knots and the fixed paths. For example, assume the source
receptacle object was a pad, the movable object was a peg,
and the destination receptacle object was a hole. Then the
path of the object could consist of a fixed path, a flexible
path and a fixed path. The f.irst fixed path would be the
path to pick the peg up off the pad. The second fixed path
would be the path to insert the peg into the hole to the
desired depth. And the flexible path would be between the
end of the first fixed path and the start of the second fixed
path.

For each flexible path, the path planning module will
create a near optimum, collision-free path that does not
violate any of the dynamic constraints on the joints of the
robot or any of the constraints on the movement of the
object .

Since we are building a software system, the expert
system software must be capable of being incorporated into
the overall software. Therefore, it was decided to have the
expert system run on the Silicon Graphics computer. Although
LISP is available on the Silicon Graphics, it was decided to
use CLIPS. CLIPS is a forward chaining expert system shell
written in C. The source code for CLIPS is commercially
available [1 3 . Harrington [21 has compared CLIPS, LISP,
Prolog, and OPS5 and has concluded IIBecause of its
embedability, its expandability, and its smaller size, CLIPS
would be the better selection for embedding low-level ES
capability within a control systemt1.

9 0

Conclusions

This paper has presented an overview of the software
being developed at the University of Alabama, Huntsville to
enable a user to control a robot from a task level. The main
emphasis of the project is to develop a set of software
modules that work together as a system. This presentation
has concentrated on the user interface portion of the
project and how the requirements of the overall system have
affected the design of the user.interface portion.

Acknowledgements

Research for this paper has been supported in part by a grant
form the Science, Technology and Energy Division of the
Alabama Department of Economic and Community Affairs.
However, any opinions, findings, conclusions or
recommendations expressed herein are those of the authors and
do not necessarily reflect the views of ADECA and the State
of Alabama.

References

[l] Giarratano, J. C., CLIPS User's Guide, CLIPS Reference
Manual, COSMIC Program # MSC-21208, 382 E. Broad St. Athens,
GA, 30602.

[2] Harrington, J. B., ItCLIPS as a Knowledge Based
Language,lI Third Conference on Artificial Intellisence for
SDace ApDlications, Huntsville, November 2-3, 1987, pp.33-40.

[3] Mckee, J. W. and Wol'fsberger, J., "High Level
Intelligent Control of Telerobotic Systems,l' Conference on
Space and Military Applications of Automation and Robotics,
June, 1988, Huntsville.

91

